446 Notizen

Isoflavonoid Phytoalexins from Leaves of Trifolium arvense

John L. Ingham

Phytochemical Unit, Department of Botany, University of Reading

and

Paul M. Dewick

Department of Pharmacy, University of Nottingham

(Z. Naturforsch. 32 c, 446-448 [1977]; received February 25, 1977)

Leguminosae, *Trifolium*, Isoflavans, Pterocarpans, Phytoalexins

In response to fungal inoculation the leaves of *Trifolium arvense* accumulate the known isoflavonoid phytoalexins, medicarpin, maackiain, sativan, vestitol, and isovestitol. A previously undescribed isoflavan derivative (arvensan; 7,2'dimethoxy-4'-hydroxyisoflavan) is also produced by this species. The identification and synthesis of arvensan is described.

Numerous isoflavonoid phytoalexins 1 have been isolated from species belonging to the family Leguminosae (subfamily Lotoideae) and implicated as factors in disease resistance 2, 3. These compounds are often pterocarpan or isoflavan in nature 2, 4, 5 although isoflavone 6 and isoflavanone 6,7 phytoalexins have also been described. A recent comprehensive survey of genera (e.g. Melilotus, Medicago, Trigonella, and Trifolium) within the tribe Trifolieae has revealed that the leaves of many species accumulate isoflavan and pterocarpan derivatives following inoculation with conidial suspensions of the fungus, Helminthosporium carbonum Ullstrup 3, 4. This paper reports the isolation of a new phytoalexin from hare's-foot clover (Trifolium arvense L.) and presents evidence to support its identification as 7,2'-dimethoxy-4'-hydroxyisoflavan

Phytoalexins were obtained from the H. carbonum-inoculated leaflets of T. arvense using the drop-diffusate technique 5 . TLC (CHCl $_3$: MeOH, 50:1) of diffusate extracts 4,5 gave two broad phenolic bands at R_F 0.59 – 0.66 (termed B-1) and R_F 0.43 – 0.47 (B-2). These were eluted with EtOH and the solvent removed in vacuo (40 $^{\circ}$ C). The B-1 fraction was then further chromatographed (CHCl $_3$, \times 5) to afford, i) a mixture of medicarpin and maackiain (2) and (3) (lower zone), ii) sativan (4) (intermediate zone) and iii) an upper band (compound 1) which gave a bright orange coloura-

Requests for reprints should be sent to J. L. Ingham, Department of Botany, University of Reading, Reading RG6 2AS, England.

tion when sprayed with diazotised p-nitroaniline; compounds 2-4 are all characterised by the intense yellow colour of their diazo derivatives. Medicarpin and maackiain were eventually resolved by TLC $(\times 3)$ in n-pentane: Et₂O: HOAc (75:25:3)⁴.

 $\begin{array}{lll} \mathbf{1} \colon & R^1 \! = \! R^2 \! = \! CH_3; \ R^3 \! = \! H \\ \mathbf{4} \colon & R^1 \! = \! H; \ R^2 \! = \! R^3 \! = \! CH_3 \\ \mathbf{5} \colon & R^1 \! = \! R^2 \! = \! H; \ R^3 \! = \! CH_3 \\ \mathbf{6} \colon & R^1 \! = \! R^3 \! = \! H; \ R^2 \! = \! CH_3 \\ \mathbf{7} \colon & R^1 \! = \! R^3 \! = \! CH_3; \ R^2 \! = \! H \end{array}$

8: $R^1 = R^2 = R^3 = CH_3$

Upon multiple development $(\times 3)$ in this latter system, B-2 also separated into two components namely, vestitol (5) (upper zone) and isovestitol (6) (lower zone). All the above compounds were chromatographically homogeneous and were absent from extracts of the control leaf diffusate ⁵. The identification of compounds 2-6 was based on a UV and TLC (5 solvent systems) comparison with authentic material and on the colours formed after spraying developed chromatograms with Gibbs reagent ⁸ and diazotised p-nitroaniline.

$$R^1$$
 Q
 R^2
 R^2

Although medicarpin, vestitol and sativan are common as phytoalexins in members of the tribe Trifolieae 3, maackiain is encountered less frequently and as yet has been associated with only two genera (Trigonella and Trifolium 4, 9, 10) of this tribe. Isovestitol has previously been described as a phytoalexin of Anthyllis vulneraria and five Tetragonolobus species 11 (tribe Loteae) but in the Trifolieae it is of exceptionally rare occurrence 3. However, in addition to T. arvense, isovestitol has recently been isolated (together with 2, 3, 4, and 5) from T. rubens 3. There was no evidence to suggest that T. arvense produced either 4-methoxymaackiain or isosativan (7), two isoflavonoid phytoalexins obtained from the leaves of alsike clover (T. hybridum) 4.

Compound 1 exhibited a mass spectral fragmentation pattern entirely consistent with its identification as a trisubstituted (dimethoxy-monohydroxy)

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Notizen 447

isoflavan 12, 13. In fact, the mass and UV (EtOH) spectral data recorded for 1 (see Experimental) closely resembled those of 7,4'-dimethoxy-2'-hydroxyisoflavan 7 (isosativan) 4. The molecular ion was evident at m/e 286 and was accompanied by three major fragments at m/e 150 (a), 149 (b) and 137 (c; base peak). These ions allow the aromatic ring substituents (which biogenetically should be at C-7, 2' and 4') to be assigned as follows, i) A-RING: C-7 (OCH3; fragment b) and ii) B-RING: C-2'/C-4' (OCH₃/OH; fragment a and c). As 1 did not react to Gibbs reagent 8, 14 (cf. isosativan, deep blue 4) the single B-ring hydroxyl group must be located at C-4' rather than at C-2'. The above oxygenation pattern was confirmed by methylation (with diazomethane 15) to afford a monomethyl ether identical (UV, MS, TLC) with 7,2',4'-trimethoxyisoflavan (8) similarly prepared from vestitol (5). Compound 1 is thus 7,2'-dimethoxy-4'-hydroxyisoflavan; this substance (which has not previously been described as either a natural or synthetic product) has been named arvensan after the source plant, Trifolium arvense.

Arvensan has been synthesised via 7,4'-dibenzyloxy-2'-methoxyisoflavone ¹⁶ itself produced from the corresponding 2'-acetoxychalcone by oxidative rearrangement using thallium (III) nitrate trihydrate ¹⁷. Debenzylation of the above isoflavone followed by selective methylation and hydrogenation gave a product chromatographically and spectrally indistinguishable from natural arvensan. As noted earlier, arvensan gives a deep orange colouration when sprayed with diazotised p-nitroaniline. This feature is characteristic of several isoflavans ^{3, 18} (e. g. 6) which possess at C-4' hydroxyl group. In contrast, compounds with methoxylation at C-4' often give a bright yellow colour (e. g. 4 and 5) with diazotised p-nitroaniline.

Im TLC bioassays against spore germination of Cladosporium herbarum Fr. 8 pronounced antifungal zones were associated with applied arvensan levels of 10, 20, and 30 μ g. When tested against the mycelial growth of H. carbonum 8 arvensan had an ED₅₀ value of about 30 µg/ml; its fungitoxic activity is thus of approximately the same order as that of medicarpin (ED₅₀ 25 µg/ml) and maackiain $(ED_{50} 33 \,\mu g/ml)$ 8. The other isoflavans from T. arvense appear slightly more inhibitory than arvensan (cf. 4, ED₅₀ 10 μ g/ml; 5, ED₅₀ 17 μ g/ml; 6, ED_{50} 23 $\mu g/ml$). Nevertheless, the high arvensan level (50 µg/ml) associated with H. carbonuminduced diffusates suggests that formation of this compound may contribute significantly to disease resistance. Substantial quantities of the other isoflavonoid phytoalexins (2-6) were also produced by *T. arvense* (2, 65 μ g/ml; 3, 63 μ g/ml; 4, 105 μ g/ml; 5, 65 μ g/ml; 6, 123 μ g/ml).

The formation, by T. arvense, of several structurally similar pterocarpans and isoflavans suggests that in the plant these compounds may be biosynthetically related. In Medicago sativa there is labelling evidence to support the view that sativan is derived via methylation of vestitol and that vestitol and medicarpin can be interconverted 19. However, the latter two compounds may originate simultaneously from a common intermediate 19. Although arvensan may be derived by methylation of isovestitol, no logical demethyl precursor of the latter compound was isolated from T. arvense. In the genus Tetragonolobus, isovestitol co-occurs with 7,2',4'-trihydroxyisoflavan (demethylvestitol 11), a substance which could be readily converted to comcound 5 by methylation at C-2'. However, repeated investigation has failed to reveal the production of demethylvestitol by T. arvense; it is conceivable, therefore, that isovestitol may originate by hostplant demethylation of sativan. No evidence was obtained to suggest that T. arvense accumulated methylenedioxy substituted isoflavans related to maackiain.

Experimental

Mass and UV spectra were determined as previously described 6 . TLC separations were undertaken using precoated, glass-backed plates (Merck Kieselgel 60 F_{254} , layer thickness, 0.25 mm).

Plant material. Seeds of Trifolium arvense L. (obtained from the Botanic Garden, Klagenfurt, Austria) were grown as previously described ²⁰. Leaflets for fungal inoculation ⁵ were collected when the plants were 6 – 9 months old.

Fungal material. Cultural conditions, preparation of spore suspensions and source of Helminthosporium carbonum Ullstrup have been reported elsewhere ⁸.

7,2'-Dimethoxy-4'-hydroxyisoflavan (1) (arvensan). Colour with diazotised p-nitroaniline, orange; no colour was observed with Gibbs reagent. λ_{max} EtOH (nm) 205 (log ε 4.70), 225 (4.17), 280 – 282 (3.77), 287sh (3.71); EtOH + NaOH (nm) 217, 244sh, 285, 290, 298sh; MS rel. int.) 287 (15), 286 (M+; 89), 151 (40), 150 (84), 149 (35), 148 (30), 138 (27), 137 (100), 135 (42), 121 (45), 107 (41). Monomethyl ether **8** (R_F 0.93, CHCl₃) UV and MS as lit. ^{4, 11}. Monoacetate (R_F 0.16, CCl₄: CHCl₃, 4:1); λ_{max} EtOH (nm) 213, 225sh, 275sh, 280, 289sh; MS (rel. int.) 329 (6), 328 (M+; 40), 286 (23), 192 (21), 151 (11), 150 (100), 149 (42), 148 (22), 138 (13), 137 (52), 135 (29), 121 (14), 119 (11), 107 (18).

Synthesis of arvensan. a) 7,4'-Dihydroxy-2'-methoxyisoflavone. This intermediate was synthesised as previously described ¹⁷.

b) $7,2^{j}$ -Dimethoxy-4'-hydroxyisoflavone. The preceding isoflavone (150 mg in DMF (20 ml) was stirred (60 °C) for 1 h with $K_{2}CO_{3}$ (2 g) and $CH_{3}I$ (75 mg). The mixture was then poured into $H_{2}O$ and extracted with EtOAc (×6). After removal of EtOAc (in vacuo, 40 °C) the residue was crystalised from MeOH to give the desired product (108 mg). λ_{max} MeOH (nm) 211, 240, 248, 287, 306sh; MeOH + NaOH (nm) 211, 240, 247sh, 281, 291sh, 305sh; MS (rel. int.) 299(23), 298 (M+; 100), 297(18), 281(15), 269(10), 268(11), 267(65), 152(6), 151(77), 149(13(, 148(10), 147(27), 146(7), 119(9), 107(6), 105(7); mp. 212 -217 °C. Colour with diazotised p-nitroaniline, orange.

¹ J. L. Ingham, Botan, Rev. 38, 343 [1972].

² H. D. Van Etten and S. G. Pueppke, Biochemical Aspects of Plant-Parasite Relationships (J. Friend and D. R. Threlfall, ed.), p. 239, Academic Press, London 1976.

³ J. L. Ingham, Ph. D. thesis, University of Reading, U.K. 1976.

⁴ J. L. Ingham, Z. Naturforsch. 31 c, 331 [1976].

⁵ J. L. Ingham and R. L. Millar, Nature 242, 125 [1973].

⁶ J. L. Ingham, Z. Naturforsch. 31 c, 504 [1976].

⁷ R. S. Burden, J. A. Bailey, and G. W. Dawson, Tetrahedron Lett. 1972, 4175.

⁸ J. L. Ingham, Phytopathol. Z. 87, 353 [1976].

⁹ V. J. Higgins and D. G. Smith, Phytopathology **62**, 235 [1972].

¹⁰ J. L. Ingham and J. B. Harborne, Nature **260**, 241 [1976].

c) (\pm) -7,7'-Dimethoxy-4'-hydroxyisoflavon (1). The above isoflavone (87 mg), HOAc (20 ml) and Pd-C (10%; 80 mg) were shaken overnight in an atmosphere of H_2 . After filtration and removal of solvent, the product was chromatographed (C_6H_6 : EtOAc: MeOH: petrol, 6:4:1:3) to give an oil which solidified upon treatment with a little aq. MeOH (yield, 55 mg). UV and MS as reported for the natural product; mp. 111-115 °C. The synthetic and natural isoflavans had identical R_F values in CHCl₃: MeOH (50:1, R_F 0.65), C_6H_6 : MeOH (9:1, R_F 0.80), CHCl₃ (R_F 0.20), Et₂O: R_F R_F 0.83), and R_F R_F 0.83), and R_F R_F 0.48).

The authors thank R. W. Butters (Tate and Lyle Ltd.) for MS analyses and the Science Research Council for financial support (to J. L. I.).

¹¹ J. L. Ingham, Phytochemistry, in press.

¹² A. Pelter, P. Stainton, and M. Barber, J. Heterocyclic Chem. 2, 262 [1965].

¹³ A. Pelter and P. I. Amenechi, J. Chem. Soc., C 1969, 887.

- F. E. King, T. J. King, and L. C. Manning, J. Chem. Soc. 1957, 563.
- ¹⁵ L. E. Powell, Plant Physiol. 39, 836 [1964].

¹⁶ P. M. Dewick, Phytochemistry, in press.

¹⁷ L. Farkas, A. Gottsegen, M. Nográdi, and S. Antus, J. Chem. Soc. Perkin I 1974, 305.

¹⁸ N. W. Preston, Phytochemistry 14, 1131 [1975].

- ¹⁹ P. M. Dewick and M. Martin, J. Chem. Soc. Chem. Commun. **1976**, 637.
- ²⁰ J. L. Ingham, Phytochemistry 15, 1489 [1976].